Co on Fe3O4(001): Towards precise control of surface properties.
نویسندگان
چکیده
A novel approach to incorporate cobalt atoms into a magnetite single crystal is demonstrated by a combination of x-ray spectro-microscopy, low-energy electron diffraction, and density-functional theory calculations. Co is deposited at room temperature on the reconstructed magnetite (001) surface filling first the subsurface octahedral vacancies and then occupying adatom sites on the surface. Progressive annealing treatments at temperatures up to 733 K diffuse the Co atoms into deeper crystal positions, mainly into octahedral ones with a marked inversion level. The oxidation state, coordination, and magnetic moments of the cobalt atoms are followed from their adsorption to their final incorporation into the bulk, mostly as octahedral Co(2+). This precise control of the near-surface Co atoms location opens up the way to accurately tune the surface physical and magnetic properties of mixed spinel oxides.
منابع مشابه
Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملPreparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملCO adsorption, oxidation and carbonate formation mechanisms on Fe3O4 surfaces.
By means of density functional theory calculations that account for the on-site Coulomb interaction via a Hubbard term (DFT+U), we systematically investigated CO adsorption on Fe3O4 surfaces at different coverages. It has been found that more than one CO can coadsorb on one surface iron atom on both Fetet1 and Feoct2 terminations of Fe3O4(111). The uncapped oxygen atom is the active site for CO...
متن کاملElectronic and magnetic structure of C60/Fe3O4(001): a hybrid interface for organic spintronics
We report on the electronic and magnetic characterization of the hybrid interface constituted of C60 molecules and an epitaxial Fe3O4(001) surface grown on GaAs(001). Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD), we demonstrate that a stable C60 sub-monolayer (ML) can be retained on the Fe3O4(001) surface upon in situ annealing at 250 C. A carbon K-edge...
متن کاملJahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001).
Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wavelike structure along the [110] direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 144 9 شماره
صفحات -
تاریخ انتشار 2016